LOGICAL DATABASE DESIGN Part #1/2

Functional Dependencies

• Informally, a FD appears when the values of a set of attributes uniquely determines the values of another set of attributes.

 Example: schedule (PILOT, FLIGHT#, DATE, TIME)
 1. TIME functionally depends upon FLIGHT#
 2. PILOT functionally depends upon {FLIGHT#, DATE}
 3. FLIGHT# functionally depends upon {PILOT, DATE, TIME}

 OR
 1. FLIGHT# uniquely determines TIME
 2. {FLIGHT#, DATE} uniquely determines PILOT
 3. {PILOT, DATE, TIME} uniquely determines FLIGHT#

 OR
 1. FLIGHT# → TIME
 2. {FLIGHT#, DATE} → PILOT
 3. {PILOT, DATE, TIME} → FLIGHT#

 Note, the "→" sign is read "functionally determines"

• Formal Definition:

 Let r(R), X ⊆ R, and Y ⊆ R.

 Let s(X) = Π_X(r) and q(Y) = Π_Y(r).
There is a FD $X \rightarrow Y$ for every state of r if the mapping $f : s(X) \rightarrow q(Y)$ is a function.

- In algebraic sense, $r(R)$ satisfies the FD $X \rightarrow Y$, if $\Pi_Y(\sigma_{X=X'}(r))$ always produces at most one tuple. (Note, X' is values of the set of attributes X.)

- **Properties of FDs**
 1. If $X \rightarrow Y$, then $\forall t_1, t_2 \in r(R), t_1[Y]=t_2[Y]$ if $t_1[X]=t_2[X]$.
 2. FD is a time invariant property of a relation r, i.e. it holds for all states of r.

- **Discussion**
 - If X is a key of $r(R)$, then for arbitrary $Y \subseteq R$, r satisfies the FD $X \rightarrow Y$.

Dr. Byunggu Yu
- If the relationship cardinality between $\Pi_X(R)$ and $\Pi_Y(r)$ is many-to-one, then r satisfies $X \rightarrow Y$ (if the relationship is 1-to-1, then $Y \rightarrow X$ holds too.)

- Looking at the current contents of a relation, one cannot prove the existence of a FD; but it is sometimes possible to say which FDs are not satisfied.

- FDs are statements about the real world made by the DBA in accordance with the semantics of the attributes and the reality which is modeled.

- FDs are axioms about the world which cannot be proven.

- Most DBMSs preserve the FDs of the form Key \rightarrow Attributes, but some systems are capable of enforcing all FDs specified by the DBA.

Trivial FD and Nontrivial FD

supplies (S_NAME, S_ADDR, PART#, PRICE)

- Nontrivial FDs:
 1. S_NAME \rightarrow ADDR (if only one address is important)
 2. \{S_NAME, PART#\} \rightarrow PRICE
- Trivial FDs:
 \(S_\text{NAME} \rightarrow S_\text{NAME} \)
 \(\{ S_\text{NAME}, \text{ADDR} \} \rightarrow S_\text{NAME} \)
 \(\{ S_\text{NAME}, \text{ADDR} \} \rightarrow \text{ADDR} \)
 \(\{ S_\text{NAME}, \text{PART}\# \} \rightarrow S_\text{NAME} \)
 \(\{ S_\text{NAME}, \text{PART}\# \} \rightarrow \text{PART}\# \)

 Note, \(A \rightarrow B \) is trivial if and only if \(B \subseteq A \)

- From Nontrivial FDs 1 and 2, one can derive
 \(\{ S_\text{NAME}, \text{PART}\# \} \rightarrow \{ \text{ADDR}, \text{PRICE} \} \)

 Note, \(\{ S_\text{NAME}, \text{PART}\# \} \) is a key of the relation "supplies" and, therefore, it functionally determines all other attributes in the relation.

Logical Implications

- Suppose that \(A \rightarrow B \) and \(B \rightarrow C \) are FDs on a schema \(R=ABC \). Then, \(A \rightarrow C \) is also an FD on \(R \).

 Proof

 Let \(r(R) \) be a relation that satisfies FDs \(A \rightarrow B \) and \(B \rightarrow C \). Suppose that \(\exists \ t_1, t_2 \in r(R), \) such that \(t_1[A] = t_2[A] \) and \(t_1[C] \neq t_2[C] \).
If \(t_1[B] \neq t_2[B] \) then \(A \rightarrow B \) does not hold. Otherwise, \(B \rightarrow C \) does not hold.

By contradiction, we conclude that, for no two \(t_1, t_2 \in r(R) \), both \(t_1[A] = t_2[A] \) and \(t_1[C] \neq t_2[C] \). This is necessary and sufficient condition to uphold \(A \rightarrow C \).

Let \(F \) be a set of FDs on \(R \) and let \(X \rightarrow Y \) be an FD on \(R \) which may or may not be in \(F \).

We say that \(F \) logically implies \(X \rightarrow Y \), denoted by \(F \models X \rightarrow Y \), if every relation \(r(R) \) that satisfies FDs in \(F \) also satisfies \(X \rightarrow Y \) (i.e., for no two \(t_1, t_2 \in r(R) \), both \(t_1[X] = t_2[X] \) and \(t_1[Y] \neq t_2[Y] \)).

Example:
\[F = \{ A \rightarrow B, B \rightarrow C \} \models A \rightarrow C \]

Closure

- Let \(F \) be a set of FDs on a schema \(R \). The closure \(F^+ \) of the set \(F \) is the set of all FDs logically implied by \(F \), i.e.
\[F^+ = \{ X \rightarrow Y \mid F \models X \rightarrow Y \} \]

Example:
\[F = \{ A \rightarrow B, B \rightarrow C \} \]
\[F^+ = \{ A \rightarrow B, B \rightarrow C, A \rightarrow C, \]
AB→C, ABC→C, AB→BC, BC→B,
A→∅, B→∅, C→∅, ...

• **Candidate Key**
 - Let r(R=A1A2...An) be a relation for which the set of FDs F is satisfied. Let X⊆R.

 We say that X is a candidate key for r(R) if
 1. X→A1A2...An ∈ F+
 2. For no Y⊂X, Y→A1A2...An ∈ F+

 - X is a superkey if only 1 is satisfied.
 - But how can we check the condition 1? ➔ Use X+ computation or Armstrong Axioms

• **Closure of a set of attributes**
 - Let X be a set of attributes s.t. X ⊆ R and let F be a set of FDs on R. The closure of X under F, denoted by X+, is the set of all the attributes that are determined by X under F, i.e.
 \[X^+ = \{ A \mid X \rightarrow A \} \]

 X+ Computation

• **Complexity of the algorithm is proportional to the cardinality of the set of FDs, F.**

• **Algorithm:**

 Input: A relation schema R, set of FDs F, and an attribute set X⊆R.
Output: X^+, i.e. the closure of X under F.

Method:

begin

1. $X^{(0)}=X$
2. $X^{(i+1)}=X^{(i)} \cup \{ A \mid \exists Y,Z (Y \rightarrow Z \in F \land A \in Z \land Y \subseteq X^{(i)}) \}$
3. repeat step 2 until no more changes

end

- **Example 1 of 2:**

- $F = \{ AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B,$
 $D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG \}$
- $X = BD$
- begin. $X^{(0)}=BD$

 $X^{(1)}=BD \cup \{ EG \mid D \rightarrow EG \} = BDEG$

 $X^{(2)}=BDEG \cup \{ C \mid BE \rightarrow C \} = BCDEG$

 $X^{(3)}=BCDEG \cup \{ ABDG \mid CE \rightarrow AG, CG \rightarrow BD, BC \rightarrow D, C \rightarrow A \}$

 $X^{(4)}=ABCDEG \cup \{ ABCDEG \mid \ldots \} = ABCDEG$

 $X^{(4)} = X^{(3)}$ end!

- $X^+ = BD^+ = ABCDEG$

- **Example 2 of 2**

 - $F = \{ A \rightarrow C, B \rightarrow DC, AC \rightarrow B \}$. Is $A \rightarrow BD$?
 - $X=A$
 - begin. $X^{(0)}=A$

 $X^{(1)}=AC$

 $X^{(2)}=ABC$

 $X^{(3)}=ABCD$
\[X^{(4)} = ABCD \]
\[X^{(4)} = X^{(3)} \text{ end!} \]

- \[X^+ = A^+ = ABCD \implies BD \subseteq A^+ \implies A \rightarrow BD. \]

Armstrong Axioms

- **Sound and complete set of rules for the derivation of FDs in** \(F^+ \), **given a set of FDs** \(F \).

- **Primary axioms**
 - Let \(R \) be a set of attributes, and let \(F \) be the set of FDs on \(R \).
A1. Reflexivity: If $Y \subseteq X \subseteq R$, then $F^{A1} = X \rightarrow Y$ (trivial FDs).

A2. Additivity: $X \rightarrow Y \overset{A2}{=} XZ \rightarrow YZ$ for every $Z \subseteq R$.

A3. Transitivity: $\{X \rightarrow Y, Y \rightarrow Z\} \overset{A3}{=} X \rightarrow Z$ for $X,Y,Z \subseteq R$.

Example: address (STREET, CITY, ZIP)

$F = \{ZIP \rightarrow CITY, \{STREET,CITY\} \rightarrow ZIP\}$

Prove that $\{ZIP,STREET\}$ is a superkey of the relation "address"!

1. $ZIP \rightarrow CITY$ (given)
2. $\{ZIP,STREET\} \rightarrow \{STREET,CITY\}$ (A2. additivity)
3. $\{STREET,CITY\} \rightarrow ZIP$ (given)
4. $\{STREET,CITY\} \rightarrow \{STREET,CITY,ZIP\}$ (A2. additivity)
5. $\{ZIP,STREET\} \rightarrow \{STREET,CITY,ZIP\}$ (A3. transitivity from 2 and 4)

$\Rightarrow \{ZIP,STREET\}$ is a superkey.

- **Secondary axioms**
 - Can be derived from the primary axioms

A4. Union: $\{X \rightarrow Y, X \rightarrow Z\} \overset{A4}{=} X \rightarrow YZ$.

A5. Pseudotransitivity: $\{X \rightarrow Y, WY \rightarrow Z\} \overset{A5}{=} WX \rightarrow Z$.

A6. Decomposition: If $X \rightarrow Y$ and $Z \subseteq Y$, then $X \rightarrow Z$.
- The derivation of the secondary rules:

A4. \(F = \{ X \rightarrow Y, X \rightarrow Z \} \) (given)

1. \(X \rightarrow Y \) \[A2 \]
2. \(X \rightarrow Z \) \[A2 \]
3. \(\{ X \rightarrow XY, XY \rightarrow YZ \} \) \[A3 \]

A5. \(F = \{ X \rightarrow Y, WY \rightarrow Z \} \) (given)

1. \(X \rightarrow Y \) \[A2 \]
3. \(\{ WX \rightarrow WY, WY \rightarrow Z \} \) \[A3 \]

A6. \(F = \{ X \rightarrow Y \}, Z \subseteq Y \) (given)

1. \(Z \subseteq Y \) \[A1 \]
3. \(\{ X \rightarrow Y, Y \rightarrow Z \} \) \[A3 \]

- Important consequence of A4 and A6:

\(X \rightarrow A_1A_2...A_n \) iff \(X \rightarrow A_i, i=1,2,...,n \).

- To prove that \(X \subseteq R \) is a superkey of a relation \(r(R) \), it is sufficient to show that \(\forall A_i \in R, X \rightarrow A_i \).

Properties

- **Soundness:** The axioms do not generate any incorrect FD, i.e. if \(X \rightarrow Y \) can be logically derived from \(F \) by Armstrong rules, then \(X \rightarrow Y \) holds.

- **Completeness:** The axioms allow us to find all FDs in \(F^+ \).
• Examples: $r(ABC), F=\{AB \rightarrow C, C \rightarrow B\}$

 - Prove $AC \rightarrow A$

 $AC \subseteq AC \quad \vdash AC \rightarrow A$

 - Prove $AC \rightarrow B$

 1. $C \rightarrow B$ (given)
 2. $AC \rightarrow AB$ (A2)
 3. $AC \rightarrow B$ (A6)

 - Prove $AB \rightarrow ABC$

 1. $AB \rightarrow C$ (given)
 2. $AB \rightarrow ABC$ (A2)

 - Prove $AB \rightarrow BC$

 1. $AB \rightarrow C$ (given)
 2. $AB \rightarrow BC$ (A2)